Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors.
نویسندگان
چکیده
Adenosine 1 receptors (A1AR) have been shown in previous experiments to play a major role in the tubuloglomerular feedback (TGF) constrictor response of afferent arterioles (AA) to increased loop of Henle flow. Overexpression studies have pointed to a critical role of vascular A1AR, but it has remained unclear whether selective deletion of A1AR from smooth muscle cells is sufficient to abolish TGF responsiveness. To address this question, we have determined TGF response magnitude in mice in which vascular A1AR deletion was achieved using the loxP recombination approach with cre recombinase being controlled by a smooth muscle actin promoter (SmCre/A1ARff). Effective vascular deletion of A1AR was affirmed by absence of vasoconstrictor responses to adenosine or cyclohexyl adenosine (CHA) in microperfused AA. Elevation of loop of Henle flow from 0 to 30 nl/min caused a 22.1 ± 3.1% reduction of stop flow pressure in control mice and of 7.2 ± 1.5% in SmCre/A1ARff mice (P < 0.001). Maintenance of residual TGF activity despite absence of A1AR-mediated responses in AA suggests participation of extravascular A1AR in TGF. Support for this notion comes from the observation that deletion of A1ARff by nestin-driven cre causes an identical TGF response reduction (7.3 ± 2.4% in NestinCre/A1ARff vs. 20.3 ± 2.7% in controls), whereas AA responsiveness was reduced but not abolished. A1AR on AA smooth muscle cells are primarily responsible for TGF activation, but A1AR on extravascular cells, perhaps mesangial cells, appear to contribute to the TGF response.
منابع مشابه
Research Symposium - Purines, adenosine and nitric oxide in the regulation of kidney function 7P SA14 THE ROLE OF PURINERGIC RECEPTORS ALONG THE RENAL MICROVASCULATURE
Autoregulation of renal blood flow is an established physiological phenomenon, however the signaling mechanisms involved remain elusive. Autoregulatory adjustments in preglomerular resistance involve myogenic and tubuloglomerular feedback influences. While there is general agreement on the participation of these two regulatory pathways, the signaling molecules and effector mechanisms have not b...
متن کاملAdenosine A₁-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment.
Adenosine mediates tubuloglomerular feedback responses via activation of A(1)-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A(1)-receptor knockout (A(1)(-/-)) and wild-type (A(1)(+/+)) mice we investigated the hypoth...
متن کاملPhysiological role for P2X1 receptors in renal microvascular autoregulatory behavior.
This study tests the hypothesis that P2X1 receptors mediate pressure-induced afferent arteriolar autoregulatory responses. Afferent arterioles from rats and P2X1 KO mice were examined using the juxtamedullary nephron technique. Arteriolar diameter was measured in response to step increases in renal perfusion pressure (RPP). Autoregulatory adjustments in diameter were measured before and during ...
متن کاملNitric oxide deficiency and increased adenosine response of afferent arterioles in hydronephrotic mice with hypertension.
Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contra...
متن کاملAfferent arteriolar responses to β,γ-methylene ATP and 20-HETE are not blocked by ENaC inhibition
Afferent arteriolar myogenic and tubuloglomerular feedback responses are critical for the proper maintenance of renal hemodynamics and water and electrolyte homeostasis. adenosine triphosphate (ATP) P2X receptor activation and 20-hydroxyeicosatetraenoic (20-HETE) have been implicated in afferent arteriolar autoregulatory responses. Besides these two participants, members of the degenerin/epithe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 8 شماره
صفحات -
تاریخ انتشار 2012